o

Pacific
Northwest

Improving Spectroscopic
Analysis using Machine
Learning from Atomistic

Simulations

June 18,2019
Eric Bylaska (PNNL)

Raymond Atta-Fynn (UTA)

“A man dreams of a miracle and wakes
up with loaves of bread”

Erich Maria Remarque

ssssssssssssss

ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy




\%/ Outline

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

 Ab initio Molecular Dynamics - Predictive Model for Molecular
Geochemistry

« Solving dx/dt = F(x) faster

» Challenges and Opportunities in Fitting Molecular Dynamics
Potentials with ML




‘%/ Challenges for Molecular Modeling Of
Pacific Geochemistry/Actinide Chemistry

Ncgrthvgeg.t * Most (all) geochemistry problems begin at the nano-scale

= Large numbers of atoms (1000’s) and long simulation times are
needed to simulate dilute solutions

* Molecular level experiments need interpretation

» Classical two and three body potentials are often used for these type of
simulations

» Unfortunately, these classical potentials are often not very good at
polarization, e.g. predicting the hydration shells of many aqueous metal
(surface) species, or chemical bond breaking/making

tt ST 18 o * Ab Initio Molecular Dynamics (AIMD) avoids the use of such potentials but

(A T - . .
AIMD simulation of U(V1)-U(VI) is only practical for P83 1000's of atoms.
dimerization on solvated Mackinawite

surface(300°K)

» Still need Free energy pathways, PMFs
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normal — results in a very

large water dipole .
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: Ab initio molecular dynamics (AIMD)
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Development emphasis is on providing parameter-free predictions applicable to a wide range
of temperatures, pressures, and compositions

QM/MM MM >

* 100-1000 atoms,
uses plane wave basis
« >>10Katoms likely within 2 years
« Many FFTs and
DGEMM operations
«  “Meaty”: Lots of FLOPs,
but also bandwidth sensitive




\;g/ Basic Features of Ab Initio Molecular
Pacific  Dynamics

Northwest
DFT Equations > MCSCF
Hy, =&y,

1 2 ~
-—V°+V Vi +V
Hwi(r)= > + l(r)+ vt H[p](r) wi(r)_azKij(r)wj(r)
+{1-a)V.[p](r)+V.[p](r) f
. . . Plane-wave basis sets, psudopotentials
CP dynamics: lon and wavefunction motion are used o solve PDEs
coupled. Ground state energy p=0
Ne , Run 'times of AlMD on 256 Water molecules
wj. = Hy, - E Ay, Doable but | * ot
=1 N Expensive
. N oH _
MR, =F, F-= E<¢z ‘1//1> <
=1 07RI E 10!
Want to do this in ~1second perstep _ INjImEny| _

Number of nodes/cores (66 used threads per node)
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— Expt. Allen et.al.
- + Sim 122H,0
« » Sim 64H,0

 Good EXAFS agreement but recent HEXS
experiments suggest a 4-fold state is
energetically nearby

* Results from Metadynamics
- ) - \ tive variable

B orf lifetime in
b 5-fold state.

kcal/mol
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The generally excellentagreement of the 15t principle MD-XAFS simulation with the data.
The scans are calculated by a parameter free method which can be implemented more

efficiently than the use of empirical interactions suggesting that this method can be
used to interpret more XAFS spectra in more complex environments.




Octahedral uranyl-like U(VI) incorporated in hematite is
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Shell by shell

—— Duff (2002)
——liton (2012)
—— Marshall (2014)

k(A"

UL; EXAFS are nearly
identical, but three different
interpretations:

Duff et al. (2002)
liton et al. (2012)
Marshall et al. (2014)

All used very high Debye-
Waller factors to model the
first shell

Koy (k) (A?)

accommodated by protonated trans-corner Fe vacancies

AIMD-informed EXAFS
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corner-sharing
vac.

McBriarty et al., Env. Sci. Technol. 52 (2018) 6282
[Experimental data from Marshall et al. 2014]



\%/ Future Transformative Applications in Geochemistry

Pacific
Northwest

NATIONAL LABORATORY

Mole fraction
°

~Log conc.
3
T

-_-oL_ S S W W S I VY Va—.
2 3 3 5 o 7 s

pH

Old Way — The diagram for the
distribution of aluminum species

was determined entirely from fitting

thermodynamic data using an
assumed speciation scheme.

Synergistic AIMD free energy simulations with XAS spectra can be used to
determine the solute structure of environmentally important species in solutions
as a function of TPX. Used to develop chemically and thermodynamically highly
accurate solution models with exceptional extrapolation properties in TPX.

e Strategiesto search configuration space must be

developed.
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AIMD simulations are already find relevant solvent structures in a first
principles approach to calculating isotope fractionation based on harmonic
frequencies.

« If the simulations were faster, it would be possible to directly calculate the
fractionation factors using quantum dynamics.



\?f/ Other Spectroscopies: Algorithms for IR and

Pacific

Northwest Raman spectra interpretation

AAAAAAAAAAAAAAAA

« AIMD simulations have the potential to significantly improve the | Li*inside (D,0),, droplet
molecular interpretation of IR and Raman spectroscopies along | JM
recent variants of them where they are combined with ﬁmgm‘ L R
instrumentation such as AFM. T [

 In principle, AIMD analysis methods can easily be extended to IR | Li" outside (D,0),, droplet
and Raman (i.e., AIMD-IR and AIMD-Raman). . M

. _ 1 - lwt . . 600 800 100 1200 1 0 1(0 180 00 ’_”.’OU 2400 2600 2800
Absorption (w) = mf—“’ e @t (P(0)|P(t) )dt

P= ﬁ Imlogdet Q* where QM <¢i|eib“'r|¢j>

= g 50, (7o) + e 1)) 1072

. Improvmg standard vibrational analysis

T r 1Tt r 11
= Larger and more complex systems 600 1000 1400 1800 2200 2600
= Better sampling

= Longer time scales for single molecule

From Mark Johnson (Yale)
lb”




\%/ AIMD simulations will need long
Pacific trajectories to perform autocorrelatlon
Nortwest  functions e

« Ab initio moleculardynamics (AIMD)
has transformed how spectroscopic
measurements from advanced light
sources are analyzed, such as
Raman, EXAFS, CTR, XANES, etc.

* Advanced HPC algorithm
developmenthas made the first-
principles analysis of advancedlight - " TOWERGOT g T2 ——
sources possible forthe first time

 However, the computation costof
AIMD is prohibitive for many
projects and other possible
predictive analysis, e.g. isotope
fractionation using quantum
dynamics 0

2000 2050 2100 2150 2200
Frequency (cm-1)

Running Power Spectrum - 1.209 ps

Power Spectrum




5 Free Energy Simulations

racific  Otrong Scaling is Key

Northwest t = 0.000 ps
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. . . . / y T8 é °r
» 20 picoseconds of simulation time = ek S I
200,000 steps AT g
= 1 sec/step = 2-3 days simulation time ) 2 A L

0
08 1 12 14 16 18 2 22

= 10 sec/step = 23 days simulation time
= 13 sec/step = 70 days simulation time

* Mesoscale phenomena atlongertime
scales Surface spectroscopies

U%*(aq) ---> [U(OH)13*(aq) + H30*(aq)

= Assume 1 sec/step
= 100 psec = 10-15 days simulation time
= 1 nsec =100 - 150 days simulation time

» Strong scaling required to reduce time
pertime step as much as possible

= At least below 1sec/step




\?f/ Possible Solution: Parallel in Time

Northwest Increasing the time step (dt) in time integration quickly becomes

unstable

* One approach to bridging these temporal scalesis the development of
algorithms which parallelize overtime, i.e. parallel in time algorithms

* The central philosophy of parallel in time integration is to start with a
guess for the trajectory over some fixed time interval and then attempt
to relax it until it approximates the “true” trajectory.

A Trajectory for a simple spring

| (K=1,x0=1,v0=0) 05
X(t) g , k.//\/f’/\/ﬂ/\\f\/v\/\//\/\/\\ IncreaSing time ,

Can this be
parallelized????

t =time




\?f/ Parallel In Time Algorithms Without Using Approximate
Racific .« Models: Fixed Point Parallel in Time Algorithms
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These algorithms transform standard forward substitution time integration solvers, i.e.
X, €f(x;), into fixed-point root problems

uuuuuuuuuuuuu —

Spring Trajectory
x,—fx)) (0 4

F(X) =0 or x,—f(x)|=10

Serial Parallel in
w/ increasing At
Can be solved using a variety of optimization techniques, including preconditioned fixed-point, quasi-Newton, and
preconditioned quasi-Newton optimization methods (i.e. solve F(G-1(X))=0). These algorithms can be parallelized since the

evaluation of the trial root function F(X) can be donein parallel. See Bylaska et al. Extending Molecular Simulation Time Scales:

Parallel in Time Integrations for High-Level Quantum Chemistry and Complex Force Representations. J. Chem. Phys. 2013, 139,
074114.D01:10.1063/1.4818328.

These algorithms are particularly useful for diffusion based mescoscale models
* Note phase field At ~ AX*
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The serial solution to time integration, xi+1 _ f('x,'_l) Xo = Xo

with initial condition [ f(x)) | Using column vector to store
s x f(f(xy)) each step in the time iteration
e f(F(fy)y | fromisla
PACACACAENN))

This equation can also be solved by a fixed-point iteration (or more advanced
root finding algorithms) over the whole path or trajectory

[ ] [T T (k) i
Xy 1 X _f(xo)

X(k+1) — X(k) _F(X(k)) or (k+1) (k) 'xz(k) _f(xl(k))

2 2
(k+1) (k) (k) (k)
’ 3 'x3 _f(xz )

3
(k) (k) (k)
PR I I f(xg )

=

X
X
Parallelized by distributing work B
over rows

(k+1)

= ox oM

| 774




\%/ Real Example: HCI+4H,0 MP2 AIMD Simulations

Pacific .
mg{ﬁhgu Algorithm Method Preconditioner M K3 ... Speodup (M/Kouerage)
QN MP2/6-31G* 10 26 3.7 (38)
QN MP2/6-31G* 20 34 5.6 (5.9)
QN MP2/6-31G* 25 4.0 58 (6.3)
QN MP2/6-31G* 50 6.0 7.7 (8.3)
QN MP2/6-31G* 100 11.0 80 (9.1)
QN MP2/6-31G* 150 17.0 8.2 (88)
PON MP2/6-31G* HF /321G 10 2.0 3.7 (5.0)
PQN MP2/6-31G* HF/3.21G 20 3.0 4.1 (6.7)
PQN MP2/6-31G* HE/Z.21G 25 3.0 4.6 (8.3)
PQN MP2/6-31G* HF/3.21G 50 4.0 48 (12.5)
POQN MP2/6-31G* HF /321G 100 5.0 4.8 (25.0)
POQN MP2/6-31G* HF /321G 150 5.0 5.3 (30.0)
QN MP2/6.311+G* 10 2.5 3.3 (4.0)
QN MP2/6.311+G* 20 3.5 4.9 (5.7)
QN MP2/6-311+G* 25 4.0 59 (6.3)
QN MP2/6-311+G* 50 6.0 7.7 (83)
N MP2/6-311+G* 100 11.0 8.2 (%.1)
2o eamstieos w e 1a  wy  ldeal Speedupsof30 seen,

PQN MP2/6-311+G* HE/3.21G 10 2.0 1.9 (5.0) a n d FAS m eth Od S S h OW

PQN MP2/6-311+G* HE/3-21G 20 3.0 53 (6.7) .
POQN MP2/6-311+G* HF/3-21G 25 30 6.2 (8.3) fu rther pr0m|Se . Howeve r,
PQN MP2/6-311+G* HE/3.21G 50 3.5 10.2 (14.3)

PQN MP2/63114G*  HF/3.21G 100 50 141 (25.0) pre conditioners rea ”y help'

PQN MP2/6-311+G* HE/3.21G 150 5.0 14.3 (30.0)




\%/ New machine learning strategies for improving
Bacific s!oectro_s.coplc analysis using atomistic
Northwest  gimulations

NATIONAL LABORATORY

» This development proposes to speed up the AIMD/spectroscopy analysis by generating and using machine-learned

atomistic potentials on the fly to speed up the sampling used in spectroscopic analysis, while maintaining the
accuracy of the full AIMD analysis. In addition, using machine learning to regress AIMD into effective molecular

dynamics potentials has the potential to enable quantum dynamics approaches for isotope fractionation that are
able to overcome the limits of inherent structure approaches.

train Feature Functions (2-body and 3-body) for C atom
Alanine + 64 H,0 AIMD Simulation
/ﬁ/ /\/ \ 50— 7T T T
g Feature Qo0 Q O O\\ E(R) L
+ Mapping —
2t @ @ @ Se8
1S} o R; 2
S . /'
% o O // L§
&L K O O AIMD Results 2
;/ /
train
In these approaches, 2-body and 3-body functions are used to define i
the feature mapping or basis that is input into the feed-forward neural = 0 =

network. These functions are similar to 2- and 3-body molecular
dynamics potentlals but with varying parameters, e.g.,

localatoms
(Na) _ Z e ~Na(Rij— Ry)* fc(Rij) ql(na) —91- leocalatoms(l — /160591];{) e (R +R2k+RJk)fc(le) fe(Ry) fC(Rjk)'

j=1 i#jizkjzk

i#j
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Postulate a

2

0=0, H1, H2

potential form

g of MD Potentials

UZB (Cm3+ —Hzo) =

[ACma eXP( - BCma”Cma) +

C'CmOL

D Cma

rCmO.4

+

Cma

6

|

Usp(O — Cm’" — O) = aexp( — fr1 — fry — yr3)

Kk (A7)

.

— THEORY
— EXAFS EXPERIMENT

4 | AIMD (CN=8)

QM/MM-PBE (CN=8.5) _|

| |
| QM/MM-PBEQ (CN=9)

CMD-3B (CN=9)

| l |
CMD-LJ (CN=9)

k(A™)

And use non-linear regression (mrgmin) of simulation/experimental data to find

parameters

o

Kk (A7)

1
-
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0.10

We were able to reduce the
mean absolute error w down
to 0.006, whichrepresents 005 |
roughly 5% of the range of
the force. However, this error
is too large and, additional
research into choosing
feature functions as well as
the use oflonger AIMD
simulations is required for this
method to be truly 0.10
competitive. 010

0.00

Predicted

=005}

-0.05 0.00 0.05 0.10

Truth
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 1x20x40x1 —Adam solver

Feature Functions for H Atom

Spring Energies,xp=4.5

b H2 AIMD Simulation
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" ML Potential for CO, Molecule
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« 3x60x120x1 T |

* Describedbya 3d  --|jascsiie e siale s il il
space - - e . -

« 10,000 points~=213 = - L C ]

‘‘‘‘‘

W Eexact) W Elprecictec)

While the ML approach looks feasible and automatable there
are several challenges going forward

* High-dimensional spaces

« Charges, dipoles, polarization, bond breaking, ...

More model input will probably be needed for this approach to
be predictive

« Start with fitted MD potentials and correct with ML

22




‘?f/ Computing Horizons — The [l oofmpiin mimsisre)
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NATIONAL LABORATORY —— 4 molecule in a published
paper the greater its
» Classical computing Exactquantum M\ importance.
. . : e ey *- Trotterization
is becoming power chemistry not e . predicts the
_— 27, Toesee fullerene lower than
bound _\( \)l_, Clomp_UtaIble on t SR\ " thering by 1.75 eV
classicalcomputers s e gy es gy . .- Taylor, Bylaska,
¢ A” DO E EXHSERLEEETINE PROJECT p ‘ . . 78 8 oxc T : ; ® E ¢ ¢ °Kawai’ Weare_
) ° oages * ° CCSD(T) early
S u pe rCO mp Ute rS a re e. Accuracy, system size/complexity . :. .. ST ?‘“;: o 5[1 9903’ Fullerene
going to have more o o lower than ring by
GPUs than they e : 176V
know what to do
with.....

 Planning for many

cyclesto be used for
ML
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« Computation chemistry methods are becoming truly predictive, rather then just rationalizing
existing knowledge. Synergistic use of AIMD and spectroscopies is already changing many
spectroscopies.

* New machine-learning methods for developing MD potentials will support longer dynamical
simulations and improved phase sampling methods, which will provide new models of chemical
mechanisms in complex brines, defected solids and interfaces.

» |nverse modeling expertise from the chemistry and condensed matter communities needs
to be better incorporated.

* Allthese developments will be available to the wider geochemistry, chemistry, and materials
communities via inclusion in the NWChem (NWChemEXx) program or the EMSL Arrows scientific
service.
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